Microchannel Thermo Catalytic Ignition for Advanced Mono- and Bipropellants, Phase I



Completed Technology Project (2010 - 2011)

Project Introduction

Small and micro-spacecrafts require the efficient, micro-propulsion systems. Chemical micro-propulsion is best suited for use as primary thrust, orbital insertion and attitude control because of its high energy density. When grouped into arrays for larger thrust applications, micro-propulsion devices provide high propulsive flexibility or can be used as igniters. The proposed effort will focus on thermo-catalytic ignition and combustion of advanced mono- and bi-propellants in micro-channels; and the development of a micro-propulsion device. An innovative near net shape forming technique, in combination with carbon nanotube deposition, will facilitate manufacturing of sub-millimeter diameter micro-channels and tubes with enhanced internal surfaces area for maximum catalytic reaction. The microchannels will provide thermo-catalytic ignition of bi-propellant rockets without needing high voltage igniters and can also provide stable and reliable ignition source for advanced, environmentally friendly, mono-propellants.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Glenn Research Center(GRC)	Supporting Organization	NASA Center	Cleveland, Ohio
University of Connecticut	Supporting Organization	Academia	Storrs, Connecticut

Microchannel Thermo Catalytic Ignition for Advanced Mono- and Bipropellants, Phase I

Table of Contents

Project Introduction	
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	
Project Transitions	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	
Target Destinations	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Microchannel Thermo Catalytic Ignition for Advanced Mono- and Bipropellants, Phase I

Completed Technology Project (2010 - 2011)

Primary U.S. Work Locations		
Alabama	Connecticut	
Ohio		

Project Transitions

January 2010: Project Start

January 2011: Closed out

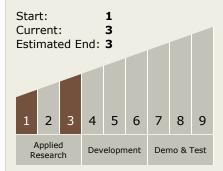
Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139216)

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Anatoliy Shchetkovskiy

Technology Maturity (TRL)

Technology Areas

Primary:

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

